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Finding the shortest path, with a little help from Dijkstra!
 

If you spend enough time reading about programming 

or computer science, there’s a good chance that you’ll 
encounter the same ideas, terms, concepts, and names, time 
and again. Some of them start to become more familiar 
with time. Naturally, organically, and sometimes without 
too much effort on your part, you start to learn what all of 
these things mean. This happens because either you’ve 



slowly begun to grasp the concept, or you’ve read about a 
phrase enough times that you start to truly understand its 
meaning.
 

However, there are some ideas and definitions that are 
much harder to understand. These are the ones that you feel 
like you’re supposed to know, but you haven’t run across it 
enough to really comprehend it.
 

Topics that we feel like we’re meant to know — but never 
quite got around to learning — are the most intimidating 
ones of all. The barrier to entry is so high, and it can feel 
impossibly hard to understand something that you have 
little to no context for. For me, that intimidating topic is 
Dijkstra’s algorithm. I had always heard it mentioned in 
passing, but never came across it, so I never had the 
context or the tools to try to understand it.
 

Thankfully, in the course of writing this series, that has all 
changed. After years of fear and anxiety about Dijkstra’s 
algorithm, I’ve finally come to understand it. And 
hopefully, by the end of this post, you will too!
 

Graphs that weigh heavy on your 
mind
 



Before we can really get into Dijkstra’s super-famous 
algorithm, we need to pick up a few seeds of important 
information that we’ll need along the way, first.
 

Throughout this series, we’ve slowly built upon our 
knowledge base of different data structures. Not only have 
we learned about various graph traversal algorithms, but 
we’ve also taught ourselves the fundamentals of graph 
theory, as well as the practical aspects of representing 
graphs in our code. We already know that graphs can be 
directed, or undirected, and may even contain cycles. 
We’ve also learned how we can use breadth-first search and 
depth-first search to traverse through them, using two very 
different strategies.
 

In our journey to understand graphs and the different types 
of graph structures that exist, there is one type of graph that 
we’ve managed to skip over — until now, that is. It’s time 
for us to finally come face-to-face with the weighted graph!

Weighted graph: a definition
 

https://medium.com/basecs/a-gentle-introduction-to-graph-theory-77969829ead8
https://medium.com/basecs/from-theory-to-practice-representing-graphs-cfd782c5be38
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A weighted graph is interesting because it has little to do 
with whether the graph is directed, undirected, or contains 
cycles. At its core, a weighted graph is a graph whose 
edges have some sort of value that is associated with them. 
The value that is attached to an edge is what gives the edge 
its “weight”.

The weight of an edge represents the cost or distance between two 
nodes.

 

A common way to refer to the “weight” of a single edge is 
by thinking of it as the cost or distance between two nodes. 
In other words, to go from node a to node b has some sort 
of cost to it.
 

Or, if we think of the nodes like locations on a map, then 
the weight could instead be the distance between nodes a 
and b. Continuing with the map metaphor, the “weight” of 



an edge can also represent the capacity of what can be 
transported, or what can be moved between two nodes, a 
and b.
 

For example, in the example above, we could ascertain that 
the cost, distance, or capacity between the nodes c and b is 
weighted at 8.

We can represent weighted graphs using an adjacency list.
 

The weighted-ness of the edges is the only thing that sets 
weighted graphs apart from the unweighted graphs that 
we’ve worked with so far in this series.
 

In fact, we probably already can imagine how we’d 



represent one of these weighted graphs! A weighted graph 
can be represented with an adjacency list, with one added 
property: a field to store the cost/weight/distance of every 
edge in the graph. Based on our previous research on graph 
representation, we’ll recall that the edges of a graph in an 
adjacency list live in the “list” portion.
 

For every single edge in our graph, we’ll tweak the 
definition of the linked list that holds the edges so that 
every element in the linked list can contain two values, 
rather than just one. These two values will be the opposite 
node’s index, which is how we know where this edge 
connects to, as well as the weight that is associated with the 
edge.
 

Here’s what that same example weighted graph would look 
like in adjacency list format.

https://medium.com/basecs/from-theory-to-practice-representing-graphs-cfd782c5be38


Weighted graph as an adjacency list.
 

Right off the bat, we’ll notice two things about this graph 
representation: first, since it is an undirected graph, the 
edge between nodes a and b will appear twice — once in the 
edge list for node a and once in the edge list for node b. 
Second, in both instances that this edge is represented in 
either node’s respective edge list, there is a cost/weight that 
is stored in the linked list element that contains the 
reference to the neighboring node (in this case, either a or 
b).
 

Okay, so there’s nothing too wild that we need to wrap our 



heads around just yet, right?
 

Here’s where the weight of a graph starts to complicate 
things slightly:
 

finding the shortest path between two 
nodes becomes much trickier when we 
have to take into account the weights 
of the edges that we’re traversing 
through.

 

Let’s take a look at an example, and this will start to 
become more clear. In the simple directed, weighted graph 
below, we have a graph with three nodes (a, b, and c), with 
three directed, weighted edges.



What is the shortest path between nodes A and B?
 

Looking at this graph, we might be able to quickly 
determine — without much hesitation — the quickest way to 
get from node a to node b. There is an edge between a and 
b, so that must be the quickest way, right?
 

Well, not exactly. Taking the weights of these edges into 
account, let’s take a deeper, second look. If we take the 
route from node a to node b, it will “cost us” 5. However, if 
we take the route from node a to node c to node b, then it 



will cost us only 3.
 

But why 3? Well, even though it may intuitively seem like 
a longer path, if we sum up the edges of going from node a 
to c and then from node c to b, we’ll see that the total cost 
ends up as 2 + 1, which is 3. It might mean that we’re 
traveling through two edges, but a cost of 3 is certainly 
preferable to a cost of 5!
 

In our three-node example graph, we could fairly easily 
look at the two possible routes between our origin and 
destination nodes. However, what if our graph was much 
bigger — let’s say twenty nodes? It wouldn’t have been 
nearly as easy for us to find the shortest path, taking into 
account the weights of our weighted graph. And what if we 
were talking about an even bigger graph? In fact, most 
graphs that we deal with are far bigger than twenty nodes. 
How feasible and scalable and efficient would it be for us 
to use a brute-force approach to solving this problem?
 

The answer is that it’s not that feasible. Nor is it really any 
fun! And that’s where Dijkstra comes to the rescue.
 

Rules of Dijkstra’s game
 

Dijkstra’s algorithm is unique for many reasons, which 



we’ll soon see as we start to understand how it works. But 
the one that has always come as a slight surprise is the fact 
that this algorithm isn’t just used to find the shortest path 
between two specific nodes in a graph data structure. 
Dijkstra’s algorithm can be used to determine the shortest 
path from one node in a graph to every other node within 
the same graph data structure, provided that the nodes are 
reachable from the starting node.

Dijkstra’s algorithm can be used to find the shortest path.
 

This algorithm will continue to run until all of the 
reachable vertices in a graph have been visited, which 
means that we could run Dijkstra’s algorithm, find the 
shortest path between any two reachable nodes, and then 
save the results somewhere. Once we run Dijkstra’s 
algorithm just once, we can look up our results from our 



algorithm again and again — without having to actually run 
the algorithm itself! The only time we’d ever need to re-run 
Dijkstra’s algorithm is if something about our graph data 
structure changed, in which case we’d end up re-running 
the algorithm to ensure that we still have the most up-to-
date shortest paths for our particular data structure.
 

So, how does Dijkstra’s algorithm actually work? It’s time 
to finally find out!

There are many possible paths between node A and node E.
 

Consider the weighted, undirected graph above. Let’s say 
that we want to find the shortest path from node a to node 
e. We know that we’re going to start at node a, but we don’t 
know if there is a path to reach it, or if there are many paths 



to reach it! In any case, we don’t know which path will be 
the shortest one to get to node e, if such a path even exists.
 

Dijkstra’s algorithm does require a bit of initial setup. But, 
before we get to that, let’s take a quick look at the steps and 
rules for running Dijkstra’s algorithm. In our example 
graph, we will start with node a as our starting node. 
However, the rules for running Dijkstra can be abstracted 
out so that they can be applied to every single node that 
we’ll traverse through and visit in an effort to find the 
shortest path.

Steps and rules to run Dijkstra’s algorithm.



 

The abstracted rules are as follows:
1. Every time that we set out to visit a new node, we 
will choose the node with the smallest known 
distance/cost to visit first.
2. Once we’ve moved to the node we’re going to 
visit, we will check each of its neighboring nodes.
3. For each neighboring node, we’ll calculate the 
distance/cost for the neighboring nodes by summing 
the cost of the edges that lead to the node we’re 
checking fromthe starting vertex.
4. Finally, if the distance/cost to a node is less than a 
known distance, we’ll update the shortest distance 
that we have on file for that vertex.

These instructions are our golden rules that we will always 
follow, until our algorithm is done running. So, let’s get to 
it!
 

First things first: we need to initialize some things to keep 
track of some important information as this algorithm runs.



Dijkstra’s algorithm, part 1
 

We’ll create a table to keep track of the shortest known 
distance to every vertex in our graph. We’ll also keep track 
of the previous vertex that we came from, before we 
“checked” the vertex that we’re looking at currently.
 

Once we have our table all set up, we’ll need to give it 
some values. When we start Dijkstra’s algorithm, we don’t 



know anything at all! We don’t even know if all of the other 
vertices that we’ve listed out (b, c, d, and e) are even 
reachable from our starting node a.
 

This means that, when we start out initially, the “shortest 
path from node a" is going to be infinity (∞). However, 
when we start out, we do know the shortest path for one 
node, and one node only: why, node a, our starting node, of 
course! Since we start at node a, we are already there to 
begin with. So, the shortest distance from node a to node a 
is actually just 0!
 

Now that we’ve initialized our table, we’ll need one other 
thing before we can run this algorithm: a way to keep track 
of which nodes we have or haven’t visited! We can do this 
pretty simply with two array structures: a visited array and 
an unvisited array.

Dijkstra’s algorithm: setting things up.
 



When we start out, we haven’t actually visited any nodes 
yet, so all of our nodes live inside of our unvisited array.

Dijkstra’s algorithm, part 2



 

Okay, now we’re good shape! Let’s get started. Remember 
our four rules from earlier? We’re going to follow them, 
step-by-step, as we work through each vertex in this graph.
 

First, we’ll visit the vertex with the smallest-known 
cost/distance. We can look at the column that tells us the 
shortest distance from a. Right now, every vertex has a 
distance of infinity (∞), except for a itself! So, we’ll visit 
node a.
 

Next, we’ll examine it’s neighboring nodes, and calculate 
the distance to them from the vertex that we’re currently 
looking at (which is a). The distance to node b is the cost of 
aplus the cost to get to node b: in this case, 7. Similarly, the 
distance to node c is the cost of aplus the cost to get to 
node c: in this case, 3.
 

Finally, if the calculated distance is less than our currently-
known shortest distance for these neighboring nodes, we’ll 
update our tables values with our new “shortest distance”. 
Well, currently, our table says that the shortest distance 
from a to b is ∞, and the same goes for the shortest distance 
from a to c. Since 7 is less than infinity, and 3 is less than 
infinity, we will update node b's shortest distance to 7, and 
node c's shortest distance to 3. We will also need to update 



the previous vertex of both b and c, since we need to keep a 
record of where we came from to get these paths! We’ll 
update the previous vertex of b and c to a, since that’s 
where we just came from.
 

Now, we’re done checking the neighbors of node a, which 
means we can mark it as visited! Onto the next node.



Dijkstra’s algorithm, part 3
 

Again, we’ll look at the node with the smallest cost that 



hasn’t been visited yet. In this case, node c has a cost of 3, 
which is the smallest cost of all the unvisited nodes. So, 
node c becomes our current vertex.
 

We’ll repeat the same procedure as before: check the 
unvisited neighbors of node c, and calculate their shortest 
paths from our origin node, node a. The two neighbors of 
node c that haven’t been visited yet are node b and node d. 
The distance to node b is the cost of aplus the cost to get 
from node c to b: in this case, 4. The distance to node d is 
the cost of aplus the cost to get from node c to d: in this 
case, 5.
 

Now, let’s compare these two “shortest distances” to the 
values that we have in our table. Right now, the distance to 
d is infinity, so we’ve certainly found a shorter-cost path 
here, with a value of 5. But what about the distance to node 
b? Well, the distance to node b is currently marked as 7 in 
our table. But, we’ve found a shorter path to b, which goes 
through c, and has a cost of only 4. So, we’ll update our 
table with our shorter paths!
 

We’ll also need to add vertex c as the previous vertex of 
node d. Notice that node b already has a previous vertex, 
since we found a path before, which we now know isn’t 



actually the shortest. No worries — we’ll just cross out the 
previous vertex for node b, and replace it with the vertex 
which, as we now know, has the shorter path: node c.

Dijkstra’s algorithm, part 4
 

Alright, so now we’ve visited both node a and c. So, which 
node do we visit next?
 

Again, we’ll visit the node that has the smallest cost; in this 
case, that looks to be node b, with a cost of 4.
 

We’ll check its unvisited neighbor (it only has one, node e), 



and calculate the distance to e, from the origin node, via 
our current vertex, b.
 

If we sum the cost of b, which is 4, with the cost that it 
takes to get from b to e, we’ll see that this costs us 6. Thus, 
we end up with a total cost of 10 as the shortest-known 
distance to e, from the starting vertex, via our current node.

How did we get that number, though?
 

So, how did we get that number? It can seem confusing at 
first, but we can break it down into parts. Remember, no 
matter which vertex we’re looking at, we always want to 
sum the shortest-known distance from our start to our 
current vertex. In simpler terms, we’re going to look at the 
“shortest distance” value in our table, which will give us, in 
this example, the value 4. Then, we’ll look at the cost from 
our current vertex to the neighbor that we’re examining. In 
this case, the cost from b to e is 6, so we’ll add that to 4.
 



Thus, 6 + 4 = 10 is our shortest-known distance to node e 
from our starting vertex.
 

Behind the scenes of Dijkstra’s 
magic
 

We’ll continue doing the same steps for each vertex that 
remains unvisited. The next node we’d check in this graph 
would be d, as it has the shortest distance of the unvisited 
nodes. Only one of node d's neighbors is unvisited, which 
is node e, so that’s the only one that we’ll need to examine.



Dijkstra’s algorithm, part 5
 

When we sum the distance of node d and the cost to get 
from node d to e, we’ll see that we end up with a value of 9, 
which is less than 10, the current shortest path to node e. 
We’ll update our shortest path value and the previous 



vertex value for node e in our table.

Dijkstra’s algorithm, part 6
 

Finally, we end up with just one node left to visit: node e.
 

However, it becomes pretty obvious that there’s nothing for 
us to really do here! None of node e's neighbors need to be 
examined, since every other vertex has already been 
visited.
 

All we need to do is mark node e as visited. Now, we’re 
actually completely done with running Dijkstra’s algorithm 



on this graph!
 

We’ve crossed out a lot of information along the way as we 
updated and changed the values in our table. Let’s take a 
look at a nicer, cleaner version of this table, with only the 
final results of this algorithm.

The final values from Dijkstra’s algorithm.
 

From looking at this table, it might not be completely 
obvious, but we’ve actually got every single shortest path 
that stems from our starting node a available here, right at 
our fingertips. We’ll remember that earlier, we learned that 
Dijkstra’s algorithm can run once, and we can reuse all the 
values again and again — provided our graph doesn’t 
change. This is exactly how that characteristic becomes 
very powerful. We set out wanting to find the shortest path 



from a to e. But, this table will allow us to look up all 
shortest paths!

Retracing our steps to find the shortest path.
 

The way to look up any shortest path in this table is by 
retracing our steps and following the “previous vertex” of 
any node, back up to the starting node.
 

For example, let’s say that we suddenly decide that we 
want to find the shortest path from a to d. No need to run 
Dijkstra’s algorithm again — we already have all the 



information we need, right here!
 

Using a stack data structure, we’ll start with node d, and 
push() it onto our stack. Then, we’ll look at node d's 
previous vertex, which happens to be node b. We’ll push() 
node b onto the stack. Similarly, we’ll look at node b' 
previous vertex (node c), and add that to our stack, and 
then look at node c's previous vertex, which is node a, our 
starting vertex!
 

Once we trace our steps all the way back up to our starting 
vertex, we can pop() each vertex off of the stack, which 
results in this order: a — c — b — d. As it turns out, this is 
the exact path that will gives us the lowest cost/distance 
from node a to node d! Pretty rad, right?

Dijkstra’s algorithm visualized, © Wikimedia Foundation
 

In many ways, Dijkstra’s algorithm is a sophisticated take 
on the typical form of breadth-first graph traversal that 

https://medium.com/basecs/stacks-and-overflows-dbcf7854dc67
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#/media/File:Dijkstras_progress_animation.gif
https://medium.com/basecs/going-broad-in-a-graph-bfs-traversal-959bd1a09255


we’re already familiar with. The major differences are the 
fact that it is a bit smarter, and can handle weighted graphs 
very well. But, if we look at Dijkstra’s algorithm 
visualized, like the animation shown here, we’ll see that it 
basically functions like a BFS search, spreading out wide 
rather than pursuing one specific path deeply.
 

The most common example of Dijkstra’s algorithm in the 
wild is in path-finding problems, like determining 
directions or finding a route on GoogleMaps.

Dijkstra’s algorithm implemented for path-finding on a map.
 

However, to find a path through GoogleMaps, an 
implementation of Dijkstra’s algorithm needs to be even 
more intelligent than the one that we created today. The 
version of Dijkstra’s algorithm that we implemented here is 
still not as intelligent as most forms that are used on a 
practical level. Imagine not just a weighted graph, but also 



having to calculate things like traffic, road conditions, road 
closures, and construction.
 

If this all feels like a lot to take in, don’t worry — it’s 
complicated stuff! In fact, it’s a hard problem that even 
Dijkstra struggled to exemplify well. As it turns out, when 
Edsger W. Dijkstra was first thinking about the problem of 
finding the shortest path back in 1956, he had a difficult 
time trying to find a problem (and its solution) that would 
be easy to understand for people who did not come from 
the computing world! He eventually did come up with a 
good example problem to showcase the importance of 
being able to find a shortest path. He chose — you guessed 
it! — a map as an example. In fact, when he designed his 
algorithm originally, he implemented it for a computer 
called the ARMAC. He used the example of a 
transportation map, which contained cities from across the 
Netherlands, in order to showcase how his algorithm 
worked.
 

Towards the end of his life, Dijkstra sat down for an 
interview and revealed the full backstory how he came up 
with his now-famous algorithm:
 

What is the shortest way to travel from Rotterdam to 

https://en.wikipedia.org/wiki/Edsger_W._Dijkstra
https://dl.acm.org/citation.cfm?doid=1787234.1787249


Groningen? It is the algorithm for the shortest path 
which I designed in about 20 minutes. One morning I 
was shopping with my young fiancée, and tired, we sat 
down on the café terrace to drink a cup of coffee and I 
was just thinking about whether I could do this, and I 
then designed the algorithm for the shortest path.

 

So what’s the moral of the story? I’m pretty sure it’s as 
simple as this: there is no problem that can’t be solved with 
a nice cup of coffee.
 

Resources
 

For better or for worse, Dijkstra’s algorithm is one of the 
most well-known methods of graph traversal in the world 
of computer science. The bad news is that sometimes it can 
feel intimidating to try to understand how it works, since 
there are so many references to it. The good news is that 
there are plenty of resources out there — you just need to 
know which ones to start with! Here are some of my 
favorites.

1. Graph Data Structure — Dijkstra’s Shortest Path 
Algorithm, Kevin Drumm
2. Dijkstra’s Algorithm, Computerphile
3. Dijkstra’s Shortest Paths Algorithm for Graphs, Sesh 
Venugopal

https://www.youtube.com/watch?v=pVfj6mxhdMw
https://www.youtube.com/watch?v=GazC3A4OQTE
https://www.youtube.com/watch?v=zXfDYaahsNA


4. A Single-Source Shortest Path algorithm for 
computing shortest path, Professor Ileana Streinu
5. A Note on Two Problems in Connexion with Graphs, 
E.W. Dijkstra

http://cs.smith.edu/~streinu/Teaching/Courses/274/Spring98/Projects/Philip/fp/dijkstra.htm
http://www.cs.yale.edu/homes/lans/readings/routing/dijkstra-routing-1959.pdf

