Finding The Shortest Path,
With A Little Help From
Dijkstra
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Finding the shortest path, with a little help from Dijkstra!

Ifyou spend enough time reading about programming

or computer science, there’s a good chance that you’ll
encounter the same ideas, terms, concepts, and names, time
and again. Some of them start to become more familiar
with time. Naturally, organically, and sometimes without
too much effort on your part, you start to learn what all of

these things mean. This happens because either you’ve



slowly begun to grasp the concept, or you’ve read about a
phrase enough times that you start to truly understand its

meaning.

However, there are some ideas and definitions that are
much harder to understand. These are the ones that you feel
like you’re supposed to know, but you haven’t run across it

enough to really comprehend it.

Topics that we feel like we’re meant to know—Dbut never
quite got around to learning—are the most intimidating
ones of all. The barrier to entry is so high, and it can feel
impossibly hard to understand something that you have
little to no context for. For me, that intimidating topic is
Dijkstra’s algorithm. I had always heard it mentioned in
passing, but never came across it, so I never had the

context or the tools to try to understand it.

Thankfully, in the course of writing this series, that has all
changed. After years of fear and anxiety about Dijkstra’s
algorithm, I’ve finally come to understand it. And

hopefully, by the end of this post, you will too!

Graphs that weigh heavy on your
mind



Before we can really get into Dijkstra’s super-famous
algorithm, we need to pick up a few seeds of important

information that we’ll need along the way, first.

Throughout this series, we’ve slowly built upon our
knowledge base of different data structures. Not only have
we learned about various graph traversal algorithms, but
we’ve also taught ourselves the fundamentals of graph
theory, as well as the practical aspects of representing
graphs in our code. We already know that graphs can be
directed, or undirected, and may even contain cycles.
We’ve also learned how we can use breadth-first search and
depth-first search to traverse through them, using two very

different strategies.

In our journey to understand graphs and the different types
of graph structures that exist, there is one type of graph that
we’ve managed to skip over—until now, that is. It’s time

for us to finally come face-to-face with the weighted graph!
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Weighted graph: a definition



https://medium.com/basecs/a-gentle-introduction-to-graph-theory-77969829ead8
https://medium.com/basecs/from-theory-to-practice-representing-graphs-cfd782c5be38
https://medium.com/basecs/spinning-around-in-cycles-with-directed-acyclic-graphs-a233496d4688
https://medium.com/basecs/going-broad-in-a-graph-bfs-traversal-959bd1a09255
https://medium.com/basecs/deep-dive-through-a-graph-dfs-traversal-8177df5d0f13

A weighted graph is interesting because it has little to do
with whether the graph is directed, undirected, or contains
cycles. At its core, a weighted graph is a graph whose
edges have some sort of value that is associated with them.
The value that is attached to an edge 1s what gives the edge
its “weight”.
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The weight of an edge represents the cost or distance between two
nodes.

A common way to refer to the “weight” of a single edge is
by thinking of it as the cost or distance between two nodes.
In other words, to go from node a to node v has some sort

of cost to it.

Or, if we think of the nodes like locations on a map, then
the weight could instead be the distance between nodes a

and b. Continuing with the map metaphor, the “weight” of



an edge can also represent the capacity of what can be
transported, or what can be moved between two nodes, a

and b.

For example, in the example above, we could ascertain that
the cost, distance, or capacity between the nodes c and b 1s

weighted at s.
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We can represent Welghted graphs using an adjacency list.

The weighted-ness of the edges is the only thing that sets
weighted graphs apart from the unweighted graphs that

we’ve worked with so far in this series.

In fact, we probably already can imagine how we’d



represent one of these weighted graphs! A weighted graph
can be represented with an adjacency list, with one added
property: a field to store the cost/weight/distance of every
edge in the graph. Based on our previous research on graph
representation, we’ll recall that the edges of a graph in an

adjacency list live in the “list” portion.

For every single edge in our graph, we’ll tweak the
definition of the linked list that 4olds the edges so that
every element in the linked list can contain two values,
rather than just one. These two values will be the opposite
node’s index, which is how we know where this edge
connects to, as well as the weight that 1s associated with the

edge.

Here’s what that same example weighted graph would look

like 1n adjacency list format.


https://medium.com/basecs/from-theory-to-practice-representing-graphs-cfd782c5be38
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Weighted graph as an adjacency list.

Right off the bat, we’ll notice two things about this graph
representation: first, since it is an undirected graph, the
edge between nodes a and b will appear twice—once in the
edge list for node a and once in the edge list for node b.
Second, in both instances that this edge is represented in
either node’s respective edge list, there is a cost/weight that
is stored 1n the linked list element that contains the

reference to the neighboring node (in this case, either a or

b).

Okay, so there’s nothing oo wild that we need to wrap our



heads around just yet, right?

Here’s where the weight of a graph starts to complicate

things slightly:

finding the shortest path between two
nodes becomes much trickier when we
have to take into account the weights
of the edges that we’re traversing

through.

Let’s take a look at an example, and this will start to
become more clear. In the simple directed, weighted graph
below, we have a graph with three nodes (a, b, and ¢), with

three directed, weighted edges.
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What is the shortest path between nodes A and B’?

Looking at this graph, we might be able to quickly
determine—without much hesitation—the quickest way to
get from node a to node b. There is an edge between a and

b, so that must be the quickest way, right?

Well, not exactly. Taking the weights of these edges into
account, let’s take a deeper, second look. If we take the
route from node a to node b, it will “cost us” 5. However, if

we take the route from node a to node ¢ to node b, then it



will cost us only 3.

But why 3?7 Well, even though it may intuitively seem like
a longer path, if we sum up the edges of going from node =
to ¢ and then from node c to b, we’ll see that the total cost
ends up as 2 + 1, which is 3. It might mean that we’re
traveling through two edges, but a cost of 3 is certainly

preferable to a cost of 5!

In our three-node example graph, we could fairly easily
look at the two possible routes between our origin and
destination nodes. However, what if our graph was much
bigger—Ilet’s say twenty nodes? It wouldn’t have been
nearly as easy for us to find the shortest path, taking into
account the weights of our weighted graph. And what if we
were talking about an even bigger graph? In fact, most
graphs that we deal with are far bigger than twenty nodes.
How feasible and scalable and efficient would it be for us

to use a brute-force approach to solving this problem?

The answer is that it’s not that feasible. Nor i1s it really any

fun! And that’s where Dijkstra comes to the rescue.

Rules of Dijkstra’s game

Dijkstra’s algorithm is unique for many reasons, which



we’ll soon see as we start to understand how it works. But
the one that has always come as a slight surprise is the fact
that this algorithm isn’t just used to find the shortest path
between two specific nodes in a graph data structure.
Dijkstra’s algorithm can be used to determine the shortest
path from one node in a graph to every other node within
the same graph data structure, provided that the nodes are

reachable from the starting node.
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Dijkstra’s algorithm can be used to find the shortest path.

This algorithm will continue to run until all of the
reachable vertices in a graph have been visited, which
means that we could run Dijkstra’s algorithm, find the
shortest path between any two reachable nodes, and then
save the results somewhere. Once we run Dijkstra’s

algorithm just once, we can look up our results from our



algorithm again and again—without having to actually run
the algorithm itself! The only time we’d ever need to re-run
Dijkstra’s algorithm is if something about our graph data
structure changed, in which case we’d end up re-running
the algorithm to ensure that we still have the most up-to-

date shortest paths for our particular data structure.

So, how does Dijkstra’s algorithm actually work? It’s time

to finally find out!
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There are many possible paths between node A and node E.

Consider the weighted, undirected graph above. Let’s say
that we want to find the shortest path from node a to node
e. We know that we’re going to start at node a, but we don’t

know if there is a path to reach it, or if there are many paths



to reach it! In any case, we don’t know which path will be

the shortest one to get to node e, if such a path even exists.

Dijkstra’s algorithm does require a bit of initial setup. But,
before we get to that, let’s take a quick look at the steps and
rules for running Dijkstra’s algorithm. In our example
graph, we will start with node a as our starting node.
However, the rules for running Dijkstra can be abstracted
out so that they can be applied to every single node that
we’ll traverse through and visit in an effort to find the

shortest path.
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Steps and rules to run Dijkstra’s algorithm.



The abstracted rules are as follows:
1. Every time that we set out to visit a new node, we
will choose the node with the smallest known
distance/cost to visit first.
2. Once we've moved to the node we're going to
visit, we will check each of its neighboring nodes.
3. For each neighboring node, we'll calculate the
distance/cost for the neighboring nodes by summing
the cost of the edges that lead to the node we're
checking fromthe starting vertex.
4. Finally, if the distance/cost to a node is less than a
known distance, we'll update the shortest distance
that we have on file for that vertex.

These instructions are our golden rules that we will always
follow, until our algorithm is done running. So, let’s get to

it!

First things first: we need to initialize some things to keep

track of some important information as this algorithm runs.
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Dijkstra’s algorithm, part 1

We’ll create a table to keep track of the shortest known
distance to every vertex in our graph. We’ll also keep track
of the previous vertex that we came from, before we

“checked” the vertex that we’re looking at currently.

Once we have our table all set up, we’ll need to give it

some values. When we start Dijkstra’s algorithm, we don’t



know anything at all! We don’t even know if all of the other
vertices that we’ve listed out (b, ¢, 4, and e) are even

reachable from our starting node a.

This means that, when we start out initially, the “shortest
path from node 2" is going to be infinity (). However,
when we start out, we do know the shortest path for one
node, and one node only: why, node a, our starting node, of
course! Since we start at node a, we are already there to
begin with. So, the shortest distance from node a to node a

is actually just o!

Now that we’ve initialized our table, we’ll need one other
thing before we can run this algorithm: a way to keep track
of which nodes we have or haven’t visited! We can do this
pretty simply with two array structures: a visited array and

an unvisited array.
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Dijkstra’s algorithm: setting things up.



When we start out, we haven’t actually visited any nodes

yet, so all of our nodes live inside of our unvisited array.
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Dijkstra’s algorithm, part 2



Okay, now we’re good shape! Let’s get started. Remember
our four rules from earlier? We’re going to follow them,

step-by-step, as we work through each vertex in this graph.

First, we’ll visit the vertex with the smallest-known
cost/distance. We can look at the column that tells us the
shortest distance from a. Right now, every vertex has a
distance of infinity (o), except for a itself! So, we’ll visit

node a.

Next, we’ll examine it’s neighboring nodes, and calculate
the distance to them from the vertex that we’re currently
looking at (which 1s a). The distance to node b is the cost of
aplus the cost to get to node b: in this case, 7. Similarly, the
distance to node c is the cost of aplus the cost to get to

node c: in this case, 3.

Finally, if the calculated distance is less than our currently-
known shortest distance for these neighboring nodes, we’ll
update our tables values with our new “shortest distance”.
Well, currently, our table says that the shortest distance
from a to b 1s o, and the same goes for the shortest distance
from a to c. Since 7 is less than infinity, and 3 is less than
infinity, we will update node v's shortest distance to 7, and

node c's shortest distance to 3. We will also need to update



the previous vertex of both b and ¢, since we need to keep a
record of where we came from to get these paths! We’ll
update the previous vertex of b and c to a, since that’s

where we just came from.

Now, we’re done checking the neighbors of node a, which

means we can mark it as visited! Onto the next node.
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Dijkstra’s algorithm, part 3

Again, we’ll look at the node with the smallest cost that



hasn’t been visited yet. In this case, node c has a cost of 3,
which is the smallest cost of all the unvisited nodes. So,

node ¢ becomes our current vertex.

We’ll repeat the same procedure as before: check the
unvisited neighbors of node ¢, and calculate their shortest
paths from our origin node, node a. The two neighbors of
node c that haven’t been visited yet are node b and node 4.
The distance to node b 1s the cost of aplus the cost to get
from node c to b: in this case, 4. The distance to node 4 1s
the cost of aplus the cost to get from node c to 4: in this

case, 5.

Now, let’s compare these two “shortest distances” to the
values that we have in our table. Right now, the distance to
d 1s infinity, so we’ve certainly found a shorter-cost path
here, with a value of 5. But what about the distance to node
p? Well, the distance to node b is currently marked as 7 in
our table. But, we’ve found a shorter path to b, which goes
through c, and has a cost of only 4. So, we’ll update our

table with our shorter paths!

We’ll also need to add vertex c as the previous vertex of
node 4. Notice that node v already has a previous vertex,

since we found a path before, which we now know isn’t



actually the shortest. No worries—we’ll just cross out the
previous vertex for node b, and replace it with the vertex

which, as we now know, has the shorter path: node c.
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Dijkstra’s algorithm, part 4

Alright, so now we’ve visited both node a and . So, which

node do we visit next?

Again, we’ll visit the node that has the smallest cost; in this

case, that looks to be node b, with a cost of 4.

We’ll check its unvisited neighbor (it only has one, node ¢),



and calculate the distance to e, from the origin node, via

our current vertex, b.

If we sum the cost of b, which 1s 4, with the cost that it
takes to get from b to e, we’ll see that this costs us 6. Thus,
we end up with a total cost of 10 as the shortest-known

distance to e, from the starting vertex, via our current node.
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How did we get that number, though?

So, how did we get that number? It can seem confusing at
first, but we can break it down into parts. Remember, no
matter which vertex we’re looking at, we always want to
sum the shortest-known distance from our start to our
current vertex. In simpler terms, we’re going to look at the
“shortest distance” value in our table, which will give us, in
this example, the value 4. Then, we’ll look at the cost from
our current vertex to the neighbor that we’re examining. In

this case, the cost from b to e 1s 6, so we’ll add that to 4.



Thus, 6 + 4 = 10 1s our shortest-known distance to node e

from our starting vertex.

Behind the scenes of Dijkstra’s
magic

We’ll continue doing the same steps for each vertex that
remains unvisited. The next node we’d check in this graph
would be 4, as it has the shortest distance of the unvisited
nodes. Only one of node d's neighbors is unvisited, which

is node e, so that’s the only one that we’ll need to examine.
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Dijkstra’s algorithm, part 5

When we sum the distance of node a and the cost to get
from node 4 to e, we’ll see that we end up with a value of 9,
which is less than 10, the current shortest path to node e.

We’ll update our shortest path value and the previous



vertex value for node e in our table.
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Dijkstra’s algorithm, part 6

Finally, we end up with just one node left to visit: node e.

However, it becomes pretty obvious that there’s nothing for
us to really do here! None of node e's neighbors need to be
examined, since every other vertex has already been

visited.

All we need to do 1s mark node e as visited. Now, we’re

actually completely done with running Dijkstra’s algorithm



on this graph!

We’ve crossed out a lot of information along the way as we
updated and changed the values in our table. Let’s take a
look at a nicer, cleaner version of this table, with only the

final results of this algorithm.
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The final values from Dijkstra’s algorithm.

From looking at this table, it might not be completely
obvious, but we’ve actually got every single shortest path
that stems from our starting node a available here, right at
our fingertips. We’ll remember that earlier, we learned that
Dijkstra’s algorithm can run once, and we can reuse all the
values again and again—provided our graph doesn’t
change. This is exactly how that characteristic becomes

very powerful. We set out wanting to find the shortest path



from a to e. But, this table will allow us to look up all
shortest paths!
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Retracing our steps to find the shortest path.

The way to look up any shortest path in this table 1s by
retracing our steps and following the “previous vertex” of

any node, back up to the starting node.

For example, let’s say that we suddenly decide that we
want to find the shortest path from a to a. No need to run

Dijkstra’s algorithm again—we already have all the



information we need, right here!

Using a stack data structure, we’ll start with node 4, and
push () 1t onto our stack. Then, we’ll look at node 4's
previous vertex, which happens to be node b. We’ll pusn ()
node b onto the stack. Similarly, we’ll look at node v'
previous vertex (node <), and add that to our stack, and
then look at node c's previous vertex, which is node a, our

starting vertex!

Once we trace our steps all the way back up to our starting
vertex, we can pop () each vertex off of the stack, which
results in this order: a — ¢ — b — 4. As it turns out, this is
the exact path that will gives us the lowest cost/distance

from node a to node 4! Pretty rad, right?
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Dijkstra’s algorithm visualized, © Wikimedia Foundation

In many ways, Dijkstra’s algorithm is a sophisticated take

on the typical form of breadth-first graph traversal that
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we’re already familiar with. The major differences are the
fact that it is a bit smarter, and can handle weighted graphs
very well. But, if we look at Dijkstra’s algorithm
visualized, like the animation shown here, we’ll see that it
basically functions like a BFS search, spreading out wide

rather than pursuing one specific path deeply.

The most common example of Dijkstra’s algorithm in the
wild is in path-finding problems, like determining

directions or finding a route on GoogleMaps.
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Dijkstra’s algorithm implemented for path-finding on a map.

However, to find a path through GoogleMaps, an
implementation of Dijkstra’s algorithm needs to be even
more intelligent than the one that we created today. The
version of Dijkstra’s algorithm that we implemented here is
still not as intelligent as most forms that are used on a

practical level. Imagine not just a weighted graph, but also



having to calculate things like traffic, road conditions, road

closures, and construction.

If this all feels like a lot to take in, don’t worry—it’s
complicated stuff! In fact, it’s a hard problem that even
Dijkstra struggled to exemplify well. As it turns out, when
Edsger W. Dijkstra was first thinking about the problem of
finding the shortest path back in 1956, he had a difficult
time trying to find a problem (and its solution) that would
be easy to understand for people who did not come from
the computing world! He eventually did come up with a
good example problem to showcase the importance of
being able to find a shortest path. He chose—you guessed
it!—a map as an example. In fact, when he designed his
algorithm originally, he implemented it for a computer
called the ARMAC. He used the example of a
transportation map, which contained cities from across the
Netherlands, in order to showcase how his algorithm

worked.

Towards the end of his life, Dijkstra sat down for an
interview and revealed the full backstory how he came up

with his now-famous algorithm:

What is the shortest way to travel from Rotterdam to


https://en.wikipedia.org/wiki/Edsger_W._Dijkstra
https://dl.acm.org/citation.cfm?doid=1787234.1787249

Groningen? It is the algorithm for the shortest path
which I designed in about 20 minutes. One morning |
was shopping with my young fiancée, and tired, we sat
down on the café terrace to drink a cup of coffee and I
was just thinking about whether I could do this, and I
then designed the algorithm for the shortest path.

So what’s the moral of the story? I’m pretty sure it’s as
simple as this: there is no problem that can’t be solved with

a nice cup of coffee.

Resources

For better or for worse, Dijkstra’s algorithm is one of the
most well-known methods of graph traversal in the world
of computer science. The bad news is that sometimes it can
feel intimidating to try to understand how it works, since
there are so many references to it. The good news is that
there are plenty of resources out there—you just need to
know which ones to start with! Here are some of my

favorites.
1. Graph Data Structure—Dijkstra’s Shortest Path
Algorithm, Kevin Drumm
2. Dijkstra’s Algorithm, Computerphile
3. Dijkstra’s Shortest Paths Algorithm for Graphs, Sesh
Venugopal


https://www.youtube.com/watch?v=pVfj6mxhdMw
https://www.youtube.com/watch?v=GazC3A4OQTE
https://www.youtube.com/watch?v=zXfDYaahsNA

4. A Single-Source Shortest Path algorithm for
computing shortest path, Professor lleana Streinu

5. A Note on Two Problems in Connexion with Graphs,
E.W. Dijkstra


http://cs.smith.edu/~streinu/Teaching/Courses/274/Spring98/Projects/Philip/fp/dijkstra.htm
http://www.cs.yale.edu/homes/lans/readings/routing/dijkstra-routing-1959.pdf

